Abstract

Laribacter hongkongensis is a fish-borne pathogen associated with invasive infections and gastroenteritis. Its adaptive mechanisms to oxygen-limiting conditions in various environmental niches remain unclear. In this study, we compared the transcriptional profiles of L. hongkongensis under aerobic and anaerobic conditions using RNA-sequencing. Expression of genes involved in arginine metabolism significantly increased under anoxic conditions. Arginine was exploited as the sole energy source in L. hongkongensis for anaerobic respiration via the arginine catabolism pathway: specifically via the arginine deiminase (ADI) pathway. A transcriptional regulator FNR was identified to coordinate anaerobic metabolism by tightly regulating the expression of arginine metabolism genes. FNR executed its regulatory function by binding to FNR boxes in arc operons promoters. Survival of isogenic fnr mutant in macrophages decreased significantly when compared with wild-type; and expression level of fnr increased 8 h post-infection. Remarkably, FNR directly interacted with ArgR, another regulator that influences the biological fitness and intracellular survival of L. hongkongensis by regulating arginine metabolism genes. Our results demonstrated that FNR and ArgR work in coordination to respond to oxygen changes in both extracellular and intracellular environments, by finely regulating the ADI pathway and arginine anabolism pathways, thereby optimizing bacterial fitness in various environmental niches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.