Abstract

L-Arginine transport by the fetal side of human placenta was investigated through the characterization of L-[3H]arginine uptake in isolated perfused cotyledon. Competitive inhibition experiments suggest the presence of at least two transport systems: a Na+-independent, pH-insensitive system inhibitable by cationic amino acids, similar to system y+, and a Na+-dependent system which recognizes both cationic and neutral amino acids only in the presence of Na+, i.e. a Bo,+-like system. The kinetic analysis of L-arginine uptake in the presence of Na+ revealed that the process is mediated by saturable components: a high-affinity system (Km = 167 +/- 18.0 microM; Vmax = 0.174 +/- 0.012 micromol min-1) and a low-affinity carrier (Km = 980 +/- 112 microM; Vmax = 1.60 +/- 0.12 micromol min-1). In the absence of Na+, L-arginine uptake was fitted by one model with a Michaelis-Menten constant of 200 +/- 24.8 microM. These results suggest that the high-affinity component corresponds to the Na+-independent system y+, whilst the low-affinity system may represent the activity of the Na+-dependent Bo,+ transporter. Kinetic studies in placentae taken from aspirin-treated pregnancies showed that L-arginine is transported with a significantly higher affinity (Km = 42.5 +/- 5.7 microM), but with a lower capacity (Vmax = 0.064 +/- 0.003 micromol min-1) than in the non-treated group. The latter finding suggests that aspirin would facilitate the uptake of the NO precursor only at very low arginine concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.