Abstract

We study the quantitative behavior of the solutions of the one-dimensional Boltzmann equation for hard potential models with Grad’s angular cutoff. Our results generalize those of [5] for hard sphere models. The main difference between hard sphere and hard potential models is in the exponent of the collision frequency \(\nu(\xi)\approx (1+|\xi|)^\gamma\). This gives rise to new wave phenomena, particularly the sub-exponential behavior of waves. Unlike the hard sphere models, the spectrum of the Fourier operator \(-i\xi^1\eta+L\) is non-analytic in η for hard potential models. Thus the complex analytic methods for inverting the Fourier transform are not applicable and we need to use the real analytic method in the estimates of the fluidlike waves. We devise a new weighted energy function to account for the sub-exponential behavior of waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.