Abstract

This study demonstrates a facile and effective method to generate mono-dispersed titanium dioxide spheres at ambient conditions. The size of the colloids can be controlled from 60 to 500nm by optimizing experimental parameters (e.g., concentration, time, and temperature). Anatase TiO2 can be obtained through titanium glycolate colloids generated in acetone via two ways: water boiling approach and calcination at a high temperature of 500°C. Particle characteristics (shape, size, and size distribution) were measured by advanced techniques, including transmission electron microscope (TEM), thermo-gravimetric analysis (TGA), UV/Vis absorption spectrum, nitrogen gas adsorption and desorption isotherms Brunauer–Emmett–Teller (BET) surface area measurement, and X-ray diffraction technique (XRD). The possible mechanism of nucleation and growth of such colloids was discussed. The role of acetone in the formation and growth of titanium glycolate colloids was also investigated by Fourier transform infrared (FT-IR) spectroscopy. Finally, the photocatalysis performance of such anatase TiO2 particles was tested and proved to be efficient in degradation of organic dyes (e.g., phenolphthalein and methly orange).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.