Abstract
PurposeLaborious and time-consuming tumor segmentations are one of the factors that impede adoption of radiomics in the clinical routine. This study investigates model performance using alternative tumor delineation strategies in models predictive of human papillomavirus (HPV) in oropharyngeal squamous cell carcinoma (OPSCC). MethodsOf 153 OPSCC patients, HPV status was determined using p16/p53 immunohistochemistry. MR-based radiomic features were extracted within 3D delineations by an inexperienced observer, experienced radiologist or radiation oncologist, and within a 2D delineation of the largest axial tumor diameter and 3D spheres within the tumor. First, logistic regression prediction models were constructed and tested separately for each of these six delineation strategies. Secondly, the model trained on experienced delineations was tested using these delineation strategies. The latter methodology was repeated with the omission of shape features. Model performance was evaluated using area under the curve (AUC), sensitivity and specificity. ResultsModels constructed and tested using single-slice delineations (AUC/Sensitivity/Specificity: 0.84/0.75/0.84) perform better compared to 3D experienced observer delineations (AUC/Sensitivity/Specificity: 0.76/0.76/0.71), where models based on 4 mm sphere delineations (AUC/Sensitivity/Specificity: 0.77/0.59/0.71) show similar performance. Similar performance was found when experienced and largest diameter delineations (AUC/Sens/Spec: 0.76/0.75/0.65 vs 0.76/0.69/0.69) was used to test the model constructed using experienced delineations without shape features. ConclusionAlternative delineations can substitute labor and time intensive full tumor delineations in a model that predicts HPV status in OPSCC. These faster delineations may improve adoption of radiomics in the clinical setting. Future research should evaluate whether these alternative delineations are valid in other radiomics models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.