Abstract

In this paper, we present a gated convolutional neural network and a temporal attention-based localization method for audio classification, which won the 1st place in the large-scale weakly supervised sound event detection task of Detection and Classification of Acoustic Scenes and Events (DCASE) 2017 challenge. The audio clips in this task, which are extracted from YouTube videos, are manually labelled with one or more audio tags, but without time stamps of the audio events, hence referred to as weakly labelled data. Two subtasks are defined in this challenge including audio tagging and sound event detection using this weakly labelled data. We propose a convolutional recurrent neural network (CRNN) with learnable gated linear units (GLUs) non-linearity applied on the log Mel spectrogram. In addition, we propose a temporal attention method along the frames to predict the locations of each audio event in a chunk from the weakly labelled data. The performances of our systems were ranked the 1st and the 2nd as a team in these two sub-tasks of DCASE 2017 challenge with F value 55.6% and Equal error 0.73, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.