Abstract

In spontaneous, stimulus-evoked, and eye-movement evoked EEG, the oscillatory signal shows large scale, dynamically organized patterns of phase. We investigated eye-movement evoked patterns in free-viewing conditions. Participants viewed photographs of natural scenes in anticipation of a memory test. From 200ms intervals following saccades, we estimated the EEG phase gradient over the entire scalp, and the wave activity, i.e. the goodness of fit of a wave model involving a phase gradient assumed to be smooth over the scalp. In frequencies centered at 6.5Hz, large-scale phase organization occurred, peaking around 70ms after fixation onset and taking the form of a traveling wave. According to the wave gradient, most of the times the wave spreads from the posterior-inferior to anterior-superior direction. In these directions, the gradients depended on the size and direction of the saccade. Wave propagation velocity decreased in the course of the fixation, particularly in the interval from 50 to 150ms after fixation onset. This interval corresponds to the fixation-related lambda activity, which reflects early perceptual processes following fixation onset. We conclude that lambda activity has a prominent traveling wave component. This component consists of a short-term whole-head phase pattern of specific direction and velocity, which may reflect feedforward propagation of visual information at fixation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call