Abstract

Epileptic seizures require a rapid and safe diagnosis to minimize the time from onset to adequate treatment. Some epileptic seizures can be diagnosed clinically with the respective expertise. For more subtle seizures, imaging is mandatory to rule out treatable structural lesions and potentially life-threatening conditions. MRI perfusion abnormalities associated with epileptic seizures have been reported in CT and MRI studies. However, the interpretation of transient peri-ictal MRI abnormalities is routinely based on qualitative visual analysis and therefore reader dependent. In this retrospective study, we investigated the diagnostic yield of visual analysis of perfusion MRI during ictal and postictal states based on comparative expert ratings in 51 patients. We further propose an automated semi-quantitative method for perfusion analysis to determine perfusion abnormalities observed during ictal and postictal MRI using dynamic susceptibility contrast MRI, which we validated on a subcohort of 27 patients. The semi-quantitative method provides a parcellation of 3D T1-weighted images into 32 standardized cortical regions of interests and subcortical grey matter structures based on a recently proposed method, direct cortical thickness estimation using deep learning-based anatomy segmentation and cortex parcellation for brain anatomy segmentation. Standard perfusion maps from a Food and Drug Administration-approved image analysis tool (Olea Sphere 3.0) were co-registered and investigated for region-wise differences between ictal and postictal states. These results were compared against the visual analysis of two readers experienced in functional image analysis in epilepsy. In the ictal group, cortical hyperperfusion was present in 17/18 patients (94% sensitivity), whereas in the postictal cohort, cortical hypoperfusion was present only in 9/33 (27%) patients while 24/33 (73%) showed normal perfusion. The (semi-)quantitative dynamic susceptibility contrast MRI perfusion analysis indicated increased thalamic perfusion in the ictal cohort and hypoperfusion in the postictal cohort. Visual ratings between expert readers performed well on the patient level, but visual rating agreement was low for analysis of subregions of the brain. The asymmetry of the automated image analysis correlated significantly with the visual consensus ratings of both readers. We conclude that expert analysis of dynamic susceptibility contrast MRI effectively discriminates ictal versus postictal perfusion patterns. Automated perfusion evaluation revealed favourable interpretability and correlated well with the classification of the visual ratings. It may therefore be employed for high-throughput, large-scale perfusion analysis in extended cohorts, especially for research questions with limited expert rater capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.