Abstract

By using a novel and low-cost microwave method, three-dimensional SiC networks have been synthesized in large-scale. The composition and structural features of the product were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The results show that the SiC networks consist of nanocable X-junction and Y-junction. Some nanocables are composed of 3C–SiC multicore encapsulated in single amorphous SiO2 shell. The SiC networks emitted stable violet–blue light around 380 nm under 325-nm excitation. Compared to the emission peak of the SiC networks after etched and the reported results of 3C–SiC nanowires, the emission peak of the SiC networks shows significant blueshift. The origin of the photoluminescence for the SiC networks could be due to two possible reasons: the central crystalline SiC nanowires and amorphous SiO2 shell. A two-step growth mechanism of the SiC networks was proposed based on the experimental characterizations. The successful synthesis of SiC networks is an important step in the development of SiC-based electronic devices and circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.