Abstract

Single-crystal trigonal (t) Se nanobelts have been synthesized on a large scale by reducing SeO2 with glucose at 160 °C. Electron microscopy images show that the nanobelts are ∼80 nm in diameter, ∼25 nm in thickness, and up to several hundreds of micrometers in length. HRTEM images prove that the nanobelts are single crystals and preferentially grow along the [001] direction. The time-dependent TEM images revealed that the formation and growth of t-Se nanobelts were governed by a solid−solution−solid growth mechanism. The redox reaction directly produced amorphous (α) Se nanoparticles under hydrothermal conditions. t-Se nanobelts were formed by dissolution and recrystallization of the initial α-Se nanoparticles under the functional capping of poly(vinylpyrrolidone) (PVP). The nanobelts obtained exhibit a quantum size effect in optical properties, showing a blue shift of the band gap and direct transitions relative to the values of bulk t-Se.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call