Abstract

Author: Because of the closed-loop phase diagram of tetrahydrofuran (THF)-water mixture, THF aqueous solution naturally exhibits concentration fluctuations near the phase boundary. Besides the fast mode induced by concentration fluctuations, the 4.5% mole fraction THF aqueous solution is also characterized by a slow mode. The existence of a trace amount of butylhydroxytoluene (BHT) antioxidant in commercial THF strongly influences the slow mode in 4.5% mole fraction THF aqueous solution. A core-shell structure with a BHT core and a shell made from THF-rich THF-D(2)O mixture was identified by the combination of dynamic laser light scattering (DLS) and small-angle neutron scattering (SANS). BHT is hydrophobic, stabilized by a THF-rich domain in THF aqueous solution and acts as a tracer to make the large-scale structure (slow mode) "visible" through SANS because of its larger contrast with the solvent. In contrast, this large-scale structure was almost not detectable by SANS when BHT was removed from the THF-D(2)O mixture. Combined UV-vis, DLS, and static light scattering (SLS) indicated that slow-moving objects do exist and that their sizes almost do not change, but their concentration decreases to a small but nonzero value at the infinite dilution limit. The origin of the elusive large-scale structure at zero BHT concentration is still not clear, but it might be associated with some hydrophobic impurities or nanobubbles. However, a polydisperse sphere model of ∼8.5% mole fraction THF-D(2)O mixture can fit the structure with a radius of ∼100 nm, which gives the temperature-dependent low-q SANS profiles of 4.5% mole fraction THF aqueous solution at zero BHT concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call