Abstract

We introduce a method for constructing large-scale (∼0.25 AU) interplanetary magnetic field lines using only solar wind velocity from well-separated appropriately located spacecraft. The technique is based on ‘labeling’ the field lines at each spacecraft with their coronal connection longitudes calculated in the EQRH (extrapolated quasi-radial hypervelocity) approximation (Nolte and Roelof, 1973). Even though the EQRH approximation is most applicable to quasi-steady solar wind, we propose that it should also be satisfactorily accurate for moderately evolving conditions. For strongly evolving conditions (e.g., flare-associated plasma) we propose a straightforward correction based on the inferred coronal longitudinal velocity profile. To illustrate the multispacecraft EQRH technique, we perform a calculation in which the interplanetary field lines in a model evolving solar wind disturbance are deduced from model observations at separated spacecraft. Since the expected agreement is found, we use data from Pioneers 8 and 9 and Vela to construct field lines for an unusually quiet period (April 26–30, 1969) and for a flare-associated disturbance accompanied by a Forbush decrease (March 23–25, 1969). The deduced field lines (even though strongly distorted by the disturbance), order the onsets of the Forbush decrease at the separated spacecraft, and the interplanetary plasma and field structures correspond to equatorial structures apparent in Hα synoptic charts of chromospheric magnetic features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.