Abstract

AbstractBiological soft tissues appearing in arterial walls are characterized by a nearly incompressible, anisotropic hyperelastic material behavior in the physiological range of deformations. For the representation of such materials we apply a polyconvex strain energy function in order to ensure the existence of minimizers and in order to satisfy the Legendre‐Hadamard condition automatically. When arteries are overstretched, discontinuous damage is observed. For the modeling of this effect we apply a damage model, which basically assumes that the damage occurs mainly in fiber direction. For the numerical simulation we consider an atherosclerotic artery and apply a high internal pressure which is comparable to the pressure applied during a balloon‐angioplasty. The 3D‐discretization results in a large system of equations, therefore, a parallel algorithm using FETI‐DP is applied to solve the boundary value problem. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call