Abstract
BackgroundThe prediction of protein-protein interactions is an important step toward the elucidation of protein functions and the understanding of the molecular mechanisms inside the cell. While experimental methods for identifying these interactions remain costly and often noisy, the increasing quantity of solved 3D protein structures suggests that in silico methods to predict interactions between two protein structures will play an increasingly important role in screening candidate interacting pairs. Approaches using the knowledge of the structure are presumably more accurate than those based on sequence only. Approaches based on docking protein structures solve a variant of this problem, but these methods remain very computationally intensive and will not scale in the near future to the detection of interactions at the level of an interactome, involving millions of candidate pairs of proteins.ResultsHere, we describe a computational method to predict efficiently in silico whether two protein structures interact. This yes/no question is presumably easier to answer than the standard protein docking question, "How do these two protein structures interact?" Our approach is to discriminate between interacting and non-interacting protein pairs using a statistical pattern recognition method known as a support vector machine (SVM). We demonstrate that our structure-based method performs well on this task and scales well to the size of an interactome.ConclusionsThe use of structure information for the prediction of protein interaction yields significantly better performance than other sequence-based methods. Among structure-based classifiers, the SVM algorithm, combined with the metric learning pairwise kernel and the MAMMOTH kernel, performs best in our experiments.
Highlights
The prediction of protein-protein interactions is an important step toward the elucidation of protein functions and the understanding of the molecular mechanisms inside the cell
The opportunity is that if in silico methods are able to predict whether two given 3D structures interact, these methods may be applied to predict interactions among the large amount of proteins with known or inferred 3D structure
Our experiments suggest that, for the prediction of proteinprotein interactions from structure, the metric learning pairwise kernel (MLPK) support vector machine (SVM) combined with MAMMOTH is the best method among the eight that we considered
Summary
The prediction of protein-protein interactions is an important step toward the elucidation of protein functions and the understanding of the molecular mechanisms inside the cell. Approaches based on docking protein structures solve a variant of this problem, but these methods remain very computationally intensive and will not scale in the near future to the detection of interactions at the level of an interactome, involving millions of candidate pairs of proteins. The elucidation of an increasing number of protein 3D structures is likely to continue at a fast pace as a result of several large-scale initiatives. These structures provide both an opportunity and a challenge for in silico prediction methods. The current methods of choice to predict interactions are mostly based on the idea of docking, which is very computationally intensive and unlikely to be able to scale to large interactomes in the near future. See [3] for a review of the issues related to the prediction of interaction using protein-protein docking, and [4] for a review of the problem of predicting interactions using structural information
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.