Abstract

This paper presents an approach for large-scale precise mapping of agricultural fields based on the analysis of Satellite Image Time Series (SITS) acquired by ESA Sentinel-2 (S2) satellite constellation. The approach has been developed in the framework of the ESA SEOM - Scientific Exploitation of Operational Missions - S2-4Sci Land and Water project. The goal is to design a flexible and automatic processing chain able to perform mapping in massive data. Here we focus on precision agriculture products generation at country level. In particular, the Country of study is Italy and the application goal is precision agriculture of single crop fields. To achieve this goal, two macro challenges are considered: (i) download and pre-processing of S2 SITS, and (ii) multi-temporal (MT) fine characterization of agricultural fields. Both challenges are addressed in an automatic way by exploiting and/or updating state-of-the-art methodologies. Promising results have been obtained over years 2017 and 2018 for Italy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call