Abstract

Recent large-scale particle-based simulations are generating vast amounts of data posing a challenge to visualization algorithms. One possibility for addressing this challenge is to map particles into a regular grid for volume rendering, which carries the disadvantages of inefficient use of memory and undesired losses of dynamic range. As an alternative, we propose a method to efficiently visualize these massive particle datasets using point rendering techniques with neither loss of dynamic range nor memory overheads. In addition, a hierarchical reorganization of the data is desired to deliver meaningful visual representations of a large number of particles in a limited number of pixels, preserving point locality and also helping achieve interactive frame rates. In this paper, we present a framework for parallel rendering of large-scale particle data sets combining point sprites and z-ordering. The latter is used to create a multi level representation of the data which helps improving frame rates. Performance and scalability are evaluated on a GPU-based visualization cluster, scaling up to 128 GPUs. Results using particle datasets of up to 32 billion particles are shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call