Abstract

Recently, the lattice Boltzmann method (LBM) is being applied in turbomachinery field, regarded as a good candidate for tool of flow simulation as well as aerodynamic sound analysis. For better prediction of broadband noise with high frequecy, which is generally generated in high Reynolds number flows, not only high grid resolution is required to capture very small eddies of the sound source inside the turbulent boundary layer, but also the computation of acoustic field is often needed. In such case, the direct simulation of flow field and acoustic field is straight-forward and effective. However, the computational cost becomes extremely expensive. Moreover, for low Mach number flows the compressible Navier-Stokes simulation not only requires high-order scheme which is unsuitable for parallel computation, but also suffers from stiff problem. LBM is suitable for such simulation thanks to its advantages. In the present study, a large-scale numerical simulation of flow field around a half-ducted propeller fan is conducted with LBM, and its result is validated by comparing with the experimental result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.