Abstract

Over the past few years, the discrete element method (DEM) has been used in models for the simulation of granular flows in various mixing applications. If these models have shown rather efficient, they have so far been applied to predict the behavior of small numbers of particles over limited spans of time. The objective of this work is to show that DEM-based models can be used to predict the flow behavior of large numbers of particles over large spans of time and, more particularly, mixing phenomena that take time to manifest in such systems. To this end, several large-scale DEM-based numerical investigations of the flow of monodisperse and bidisperse blends of up to 225 000 particles over a span of 120 s in a V-blender will be discussed using entities such as the particle velocity and granular temperature, the torque of the mixing system, RSD curves and mixing times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.