Abstract
Numerous mammalian proteins are constructed from a limited repertoire of module-types. Proteins belonging to the regulators of complement activation family--crucial for ensuring a complement-mediated immune response is targeted against infectious agents--are composed solely of complement control protein (CCP) modules. In the current study, CCP module sequences were grouped to allow selection of the most appropriate experimentally determined structures to serve as templates in an automated large-scale structure modelling procedure. The resulting 135 individual CCP module models, valuable in their own right, are available at the online database http://www.bru.ed.ac.uk/~dinesh/ccp-db.html. Comparisons of surface properties within a particular family of modules should be more informative than sequence alignments alone. A comparison of surface electrostatic features was undertaken for the first 28 CCP modules of complement receptor type 1 (CR1). Assignments to clusters based on surface properties differ from assignments to clusters based on sequences. This observation might reflect adaptive evolution of surface-exposed residues involved in protein-protein interactions. This illustrative example of a multiple surface-comparison was indeed able to pinpoint functional sites in CR1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.