Abstract

Helical hypermagnetic fields in the primordial Universe can produce the observed amount of baryon asymmetry through the chiral anomaly without any ingredients beyond the standard model of particle physics. While they generate no $B-L$ asymmetry, the generated baryon asymmetry survives the spharelon washout effect, because the generating process remains active until the electroweak phase transition. Solving the Boltzmann equation numerically and finding an attractor solution, we show that the baryon asymmetry of our Universe can be explained, if the present large-scale magnetic fields indicated by the blazar observations have a negative helicity and existed in the early Universe before the electroweak phase transition. We also derive the upper bound on the strength of the helical magnetic field, which is tighter than the cosmic microwave background constraint, to avoid the overproduction of baryon asymmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.