Abstract

This paper is aimed at establishing the relationship between the large-scale magnetic fields (LSMF), coronal holes (CH), and active regions (AR) in the Sun. The LSMF structure was analyzed by calculating the vector photospheric magnetic field under a potential approximation. Synoptic maps were drawn to study the distribution of the B⊥ field component and to isolate regions where the open field lines of the unipolar magnetic field are most radial. These are the sites of occurrence of X-ray and Hei 10830 A coronal holes detected from the SXT/Yohkoh images. It is shown that coronal holes are usually located in LSMF regions with a typical pattern of divergentB⊥ vectors and a so-called ‘saddle’ configuration.B⊥ vectors from the ‘conjugate’ (spaced by 90°) coronal holes converge towards the active regions between CH. Variations in AR distort coronal holes and change their boundaries. This implies that the energy regime in CH depends on the energy supply from the active region. The LSMF structure is more stable than coronal holes, remaining practically unchanged during tens of rotations of the Sun. Thus, a peculiar magnetically coupled system of LSMF/CH/AR has been revealed. A model has been suggested to describe the interaction of the emerging toroids in the convection zone and in the photosphere. The cellular convection, that develops at the center of the toroids, is responsible for the occurrence of active regions. The model qualitatively describes the observed particularities of the LSMF/CH/AR system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.