Abstract
Genome comparison is a vital research area of bioinformatics. For large-scale genome comparisons, the Multiple Sequence Alignment (MSA) methods have been impractical to use due to its algorithmic complexity. In this study, we propose a novel alignment-free method based on the one-to-one correspondence between a DNA sequence and its complete central moment vector of the cumulative Fourier power and phase spectra. In addition, the covariance between the four nucleotides in the power and phase spectra is included. We use the cumulative Fourier power and phase spectra to define a 28-dimensional vector for each DNA sequence. Euclidean distances between the vectors can measure the dissimilarity between DNA sequences. We perform testing with datasets of different sizes and types including simulated DNA sequences, exon-intron and complete genomes. The results show that our method is more accurate and efficient for performing hierarchical clustering than other alignment-free methods and MSA methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Structural Biotechnology Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.