Abstract

In the ocean, dominant physical processes often change at various spatial and temporal scales. Here, we examined associations between large-scale physical forcing indexed by the Pacific Decadal Oscillation (PDO), regional ocean conditions including alongshore currents in relation to the abundance of two subarctic oceanic copepods, Neocalanus plumchrus, and N. cristatus in the offshore portions of the northern California Current (NCC) system in spring of 1998–2008. We found significant relationships between the abundance of copepods, water temperature, and alongshore currents with a lag of two or four months in response to the PDO in the NCC system. During the growth season in March/April both subarctic copepod species displayed consistent cross-shelf patterns with shoreward decreasing gradient in abundance, and were negatively correlated with the PDO, sea water temperature, and alongshore currents. Our studies highlight the responses of regional ocean conditions to large-scale physical forcing and illustrate the potential for Neocalanus copepods as unique vectors for a new understanding of the ecological response in the offshore oceanic waters of the NCC system to climate variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call