Abstract

Mechanical ventilation is essential to ensure the safety of persons, equipment, and structures in cruise ship fire incidents. The mass loss rate, smoke temperature, and comprehensive heat transfer coefficient during large-scale fire experiments are researched in cruise ship flat space. The results indicate that the mass loss rate of four pool fires with different sizes presents different rules in mechanical ventilation conditions compared with open conditions. In addition, the vertical distribution of temperature appears to be stratification, which aligns with the “dual-zone model”. The horizontal distribution of the temperature has a “mutation point”. With the mutation point as the boundary, the temperature drops rapidly from the fire source to the mutation point and decreases more slowly. Furthermore, the distribution model of comprehensive heat transfer coefficient and average temperature are established. The comprehensive heat transfer coefficient is in direct proportion to the 1.00 power of heat release rate and inversely in proportion to the 0.69 power of the number of mechanical ventilation. However, the average temperature is in direct proportion to the 0.52 power of heat release rate and inversely in proportion to the 1.40 power of the number of mechanical ventilation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.