Abstract

HIV-1 integrase is one of the three essential enzymes required for viral replication and has great potential as a novel target for anti-HIV drugs. Although tremendous efforts have been devoted to understanding this protein, the conformation of the catalytic core domain around the active site, particularly the catalytic loop overhanging the active site, is still not well characterized by experimental methods due to its high degree of flexibility. Recent studies have suggested that this conformational dynamics is directly correlated with enzymatic activity, but the details of this dynamics is not known. In this study, we conducted a series of extended-time molecular dynamics simulations and locally enhanced sampling simulations of the wild-type and three loop hinge mutants to investigate the conformational dynamics of the core domain. A combined total of >480 ns of simulation data was collected which allowed us to study the conformational changes that were not possible to observe in the previously reported short-time molecular dynamics simulations. Among the main findings are a major conformational change (>20 Å) in the catalytic loop, which revealed a gatinglike dynamics, and a transient intraloop structure, which provided a rationale for the mutational effects of several residues on the loop including Q 148, P 145, and Y 143. Further, clustering analyses have identified seven major conformational states of the wild-type catalytic loop. Their implications for catalytic function and ligand interaction are discussed. The findings reported here provide a detailed view of the active site conformational dynamics and should be useful for structure-based inhibitor design for integrase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.