Abstract

Controlling fabrication of mono-dispersed and well-aligned arrays of one-dimensional (1D) nanostructures, nanowires or nanotubes, will benefit a lot for the investigation of their physical properties and their potential use in nanolasers, chemical and biological sensors, and nanoelectrode arrays for solar energy conversion and catalysis. In our previous works, we have fabricated a broad range of semiconductor nanowire arrays by electrochemical synthesis in template. In this present, we design a well-controlled process to fabricate uniform nanotube arrays through a multi-step template replication and electrodeposition approach. The resulting nanotubes with uniform wall thickness and diameters along the entire tubes are highly ordered and mono-dispersed. Moreover, we develop a supercritical drying route to avoid the clustering or collapse of the nanowire arrays caused by capillary force during the removing of the template. By this strategy, we have obtained large-scale, non-collapse, well-aligned nanowire arrays on conductive substrates. Final, the uses of these nanowire arrays for future nanodevices are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call