Abstract

BackgroundA successful development of herbivorous insects into plant tissues depends on coordination of metabolic processes. Plants have evolved complex mechanisms to recognize such attacks, and to trigger a defense response. To understand the transcriptional basis of this response, we compare gene expression profiles of two coffee genotypes, susceptible and resistant to leaf miner (Leucoptera coffella). A total of 22000 EST sequences from the Coffee Genome Database were selected for a microarray analysis. Fluorescence probes were synthesized using mRNA from the infested and non-infested coffee plants. Array hybridization, scanning and data normalization were performed using Nimble Scan® e ArrayStar® platforms. Genes with foldchange values +/-2 were considered differentially expressed. A validation of 18 differentially expressed genes was performed in infected plants using qRT-PCR approach.ResultsThe microarray analysis indicated that resistant plants differ in gene expression profile. We identified relevant transcriptional changes in defense strategies before insect attack. Expression changes (>2.00-fold) were found in resistant plants for 2137 genes (1266 up-regulated and 873 down-regulated). Up-regulated genes include those responsible for defense mechanisms, hypersensitive response and genes involved with cellular function and maintenance. Also, our analyses indicated that differential expression profiles between resistant and susceptible genotypes are observed in the absence of leaf-miner, indicating that defense is already build up in resistant plants, as a priming mechanism. Validation of selected genes pointed to four selected genes as suitable candidates for markers in assisted-selection of novel cultivars.ConclusionsOur results show evidences that coffee defense responses against leaf-miner attack are balanced with other cellular functions. Also analyses suggest a major metabolic reconfiguration that highlights the complexity of this response.

Highlights

  • A successful development of herbivorous insects into plant tissues depends on coordination of metabolic processes

  • Defense mechanisms involve a shift on metabolism, activating specific pathways such as synthesis

  • Several studies have been carried out using microarray analysis to identify genes associated with plant defense [21,22,23,24,25]

Read more

Summary

Introduction

A successful development of herbivorous insects into plant tissues depends on coordination of metabolic processes. Plants have evolved complex mechanisms to recognize such attacks, and to trigger a defense response. Genetic control of metabolic re-programming is normally triggered by few resistance genes which are seek out to be transferred to other plants. The main advantage of microarray analyses is to evaluate the expression of large number of genes in different genotypes, organs, tissues, treatments, using the same set of genes. These genes can be compared during different biological situations allowing both an association with metabolic pathways and establishement of their role on resistance response. Several studies have been carried out using microarray analysis to identify genes associated with plant defense [21,22,23,24,25]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.