Abstract

Winter fish kills can be intense under ice in shallow lakes, and have cascading effects on the food web and ultimately on lake water clarity. In maritime Western Europe, winters are usually mild, but occasional colder periods may also have strong effects on lake fish communities. Global warming may have disproportionate effects by delaying freezing and shortening the period of ice coverage. We studied differences in zooplankton (cladocerans, copepods, and rotifers): phytoplankton biomass, zooplankton community structure, and individual body size among 37 Danish lakes of various depths, chemical characteristics, and trophy, by comparing four winters of different severity (mean winter temperatures ranging from −1.19°C in 1996 to +2.9°C in 1995). We found that crustacean mean body sizes were significantly larger in the summer following a severely cold winter. The zooplankton communities in the summer after a cold winter had a significantly larger proportion of larger-bodied species and taxa. Phytoplankton biomass, expressed as chlorophyll-a (chl-a), was lower and zooplankton herbivory (chl-a:TP index), higher, in the summer after the severely cold winter of 1995/1996. All these effects were stronger in shallow lakes than in deep lakes. Changes in zooplankton during summer 1996, compared with other years, were likely caused by fish kills under ice during the preceding severe winter of 1995–1996. Fish kills due to under ice oxygen depletion would be expected to occur earlier and be more complete in the shorter water columns of shallow lakes. With climate change, severe winters are predicted to become less frequent and the winters to be milder and shorter. In general, this is likely to lead to higher winter survival of fish, lower zooplankton grazing of phytoplankton the following summer and more turbid waters, particularly in shallow eutrophic lakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call