Abstract

Disentangling direct and indirect effects of global change drivers on plant nitrogen (N) uptake in leaves is important for understanding species and community responses in a changing world. We created understorey herb communities on forest soils with and without recent agricultural history. We traced pulse additions of 15NH415NO3 within these mesocosms while applying two-level factorial treatments of N enrichment, warming and illumination. We modelled direct and indirect effects of treatments on leaf N content and 15N uptake in leaves. Warming and illumination had three times larger direct negative effects on leaf N content per dry mass and percentage leaf N derived from label (Ndfl%) than their indirect negative effects via an increasing community cover. These results imply a tissue dilution of N with increasing growth, in response to environmental change directly and indirectly exacerbated by community cover. We additionally found that interspecific differences in Ndfl% correlated with a species’ colonisation capacity and resource acquisition strategy. Global change can directly affect allocation of N into foliage, with simultaneous indirect effects via altered community properties that influence individual plant responses. Predicting the future of plant communities in a changing world requires accounting for such understudied pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.