Abstract

The photonic band gap (PBG) properties of two classes of two-dimensional (2-D) triangular lattice fabricated by holographic lithography are investigated numerically. The effect of intensity threshold on the filling ratio and then the shape of "atoms", and the corresponding photonic gap are comprehensively studied. Our results show that the recording geometry for a given 2-D triangular lattice is not unique, and this fact gives us more freedom in choosing proper recording geometry to obtain larger bandgap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.