Abstract
This paper discusses the sense in which the large $N$ limits of various quantum theories are equivalent to classical limits. A general method for finding classical limits in arbitrary quantum theories is developed. The method is based on certain assumptions which isolate the minimal structure any quantum theory should possess if it is to have a classical limit. In any theory satisfying these assumptions, one can generate a natural set of generalized coherent states. These coherent states may then be used to construct a classical phase space, derive a classical Hamiltonian, and show that the resulting classical dynamics is equivalent to the limiting form of the original quantum dynamics. This formalism is shown to be applicable to the large $N$ limits of vector models, matrix models, and gauge theories. In every case, one can explicitly derive a classical action which contains the complete physics of the $N=\ensuremath{\infty}$ theory. "Solving" the $N=\ensuremath{\infty}$ theory requires minimizing the classical Hamiltonian, and this has been possible only in simple theories. The relation between this approach and other methods which have been proposed for deriving large $N$ limits is discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.