Abstract

Middle Ordovician K-bentonites represent some of the largest known fallout ash deposits in the Phanerozoic Era. They cover minimally 2.2 × 10 6 km 2 in eastern North America and 6.9 × 10 5 km 2 in northwestern Europe, and represents the coeval accumulation of plinian and co-ignimbrite ash on both Laurentia and Baltica during the closure of the Iapetus Ocean. The three most widespread beds are the Deicke and Millbrig K-bentonites in North America and the Kinnekulle K-bentonite in northwestern Europe. The vents were located near the Laurentian margin of Iapetus on an arc or microplate undergoing collision with Laurentia. The volume of ash preserved in the stratigraphie record converted to dense rock equivalent (DRE) of silicic magma is minimally estimated to be 943 km 3 for the Deicke, 1509 km 3 for the Millbrig and 972 km 3 for the Kinnekulle. The Millbrig and Kinnekulle beds are coeval and possibly equivalent, yielding a combined DRE volume of nearly 2500 km 3. Some unknown but probably large amount of additional ash fell into oceanic regions of the Iapetus, but these areas became subducted and the ash is not preserved in the geologic record. The symmetry of the thickness contours is suggestive that one or more ash clouds interacting with equatorial stratospheric and tropospheric wind patterns dispersed pyroclastic material to both the northwest and southeast in terms of Ordovician paleogeography. Based on grain size measurements and thickness/area 1 2 plots we conclude the three beds were each formed from co-ignimbrite or possibly phreatoplinian eruption columns. Analyses of melt inclusions in primary quartz crystals indicate the parental magma contained approximately 4% dissolved water at the time of the eruption. This water provided the explosive energy during the initial gas thrust phase. The implied fragmentation pressure on the magma would have reduced much of the ejecta to small particles, forming a deposit composed largely of single crystals and glassy dust. Conversion of the ash to K-bentonite resulted in a mass loss of approximately 35%, mostly in the form of Si with lesser amounts of Na and K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.