Abstract

A small amount of graphene oxide (GO) was introduced into poly(vinylidene fluoride) (PVDF)/carbon nanotube (CNT) composites through solution compounding. The thermal conductivity, crystallization behavior of PVDF matrix, and the dispersion states of CNTs and/or CNT/GO in the PVDF composites were comparatively investigated. The results demonstrated that with the presence of only 1wt% GO, the PVDF/CNT/GO composites exhibited largely enhanced thermal conductivity compared with the PVDF/CNT composites at the same CNT content. Although the crystallinity of matrix in the PVDF/CNT/GO composites is apparently decreased in comparison with that in the PVDF/CNT composites, a large number of polar γ-form crystallites were induced. The presence of GO facilitated the dispersion of CNTs and the formation of denser CNT/GO network structure in the PVDF matrix. The theoretical simulation further demonstrated the experimental observations. The mechanisms for the largely enhanced thermal conductivity of the PVDF/CNT/GO composites were then analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.