Abstract

We present a new type of torsional soft morphing actuator designed and fabricated by twisted shape memory alloy (SMA) wires embedded in polydimethylsiloxane matrix. The design and fabrication process of the proposed soft morphing actuator are presented with investigations of its working mechanism. Actuation performance was evaluated with respect to the temporal response, the maximum torsional deformation under an applied electric current, and various design parameters including the twist direction, wire diameter, helical pitch of the SMA wire, and the actuator’s thickness and length. We demonstrate potential applications of the proposed soft morphing actuator as a soft morphing wing and airfoil. The proposed actuator will aid in the development of soft actuators, soft robotics, and other relevant scientific and engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.