Abstract

BackgroundThe availability of high-density SNP assays including the BovineSNP50 (50 K) enables the identification of novel quantitative trait loci (QTL) and improvement of the resolution of the locations of previously mapped QTL. We performed a series of genome-wide association studies (GWAS) using 50 K genotypes scored in 18,274 animals from 10 US beef cattle breeds with observations for twelve body weights, calving ease and carcass traits.ResultsA total of 159 large-effects QTL (defined as 1-Mb genome windows explaining more than 1% of additive genetic variance) were identified. In general, more QTL were identified in analyses with bigger sample sizes. Four large-effect pleiotropic or closely linked QTLs located on BTA6 at 37–42 Mb (primarily at 38 Mb), on BTA7 at 93 Mb, on BTA14 at 23–26 Mb (primarily at 25 Mb) and on BTA20 at 4 Mb were identified in more than one breed. Several breed-specific large-effect pleiotropic or closely linked QTL were also identified. Some identified QTL regions harbor genes known to have large effects on a variety of traits in cattle such as PLAG1 and MSTN and others harbor promising candidate genes including NCAPG, ARRDC3, ERGIC1, SH3PXD2B, HMGA2, MSRB3, LEMD3, TIGAR, SEPT7, and KIRREL3. Gene ontology analysis revealed that genes involved in ossification and in adipose tissue development were over-represented in the identified pleiotropic QTL. Also, the MAPK signaling pathway was identified as a common pathway affected by the genes located near the pleiotropic QTL.ConclusionsThis largest GWAS ever performed in beef cattle, led us to discover several novel across-breed and breed-specific large-effect pleiotropic QTL that cumulatively account for a significant percentage of additive genetic variance (e.g. more than a third of additive genetic variance of birth and mature weights; and calving ease direct in Hereford). These results will improve our understanding of the biology of growth and body composition in cattle.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-442) contains supplementary material, which is available to authorized users.

Highlights

  • The availability of high-density SNP assays including the BovineSNP50 (50 K) enables the identification of novel quantitative trait loci (QTL) and improvement of the resolution of the locations of previously mapped QTL.We performed a series of genome-wide association studies (GWAS) using 50 K genotypes scored in 18,274 animals from 10 US beef cattle breeds with observations for twelve body weights, calving ease and carcass traits

  • Less QTL were identified in Angus and Limousin populations than expected by their sample sizes (Table 2), which could be due to different selection programs practiced in these breeds or due to the biased samples

  • Many quantitative trait loci (QTL) associated with economically important traits in beef cattle have been identified, not all of the genetic variation in these traits has been captured because of inadequate sample size and insufficient density of markers historically used in QTL mapping studies

Read more

Summary

Introduction

The availability of high-density SNP assays including the BovineSNP50 (50 K) enables the identification of novel quantitative trait loci (QTL) and improvement of the resolution of the locations of previously mapped QTL.We performed a series of genome-wide association studies (GWAS) using 50 K genotypes scored in 18,274 animals from 10 US beef cattle breeds with observations for twelve body weights, calving ease and carcass traits. Genome-wide association studies (GWAS) sometimes identify loci that are not responsible for variation (i.e., false positives) because [3]: 1) stochastic noise can generate false associations in a small sample, and 2) patterns of correlation among loci and factors responsible for trait variation can create indirect associations between markers and traits where no causal relationship exists (known as population structure). The former can be managed by increasing sample size and the latter problem can be solved by validating

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.