Abstract

Subgrid-scale (SGS) modeling is a long-standing problem and a critical component in the large-eddy simulation (LES) of atmospheric boundary layer. A variety of SGS models with different levels of sophistication have been proposed for different needs, such as Smagorinsky's (1963) eddy viscosity model, Mason and Thomson's (1992) stochastic backscattering model, and Sullivan et al.'s (1994) near surface model. A modified Smagorinsky SGS model has been used in the LES version of Terminal Area Simulation System (TASS-LES). It has successfully simulated the buoyancy-dominated, convective atmospheric boundary layer flows, while simulations of the shear-dominated, slightly unstable, neutral, and stably stratified boundary layer flows are not so good. For the later, we used a simpler version of Sullivan et al.'s subgrid-scale model in which turbulent kinetic energy equation is not included and the model is still the first-order closure. A momentum profile matching approach is adopted in the proposed model. A series of simulations for shear-dominated, slightly unstable and neutral boundary layers are performed using different subgrid-scale models and different grid resolutions. The results are compared with those of Sullivan et al. (1994) and with empirical similarity relations for the surface layer. The simulations with the new SGS model appear to be far more satisfactory than those with the modified Smagorinsky model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.