Abstract

Large-eddy simulations (LES) of a jet in a cross-flow (JICF) problem are carried out to investigate the turbulent flow structure and the vortex dynamics in gas turbine blade film cooling. A turbulent flat plate boundary layer at a Reynolds number of Re ∞ = 400,000 interacts with a jet issued from a pipe. To study the effect of the jet inclination angle α on the flow field, two angles are chosen, the perpendicular injection at 90° and the streamwise inclined injection at 30°. For the normal injection case a small blowing ratio of the jet velocity to the cross-stream velocity R = 0.1 is examined. For the streamwise inclined injection case two blowing ratios R = 0.1 and R = 0.48 are investigated to check the impact of the jet velocity on the cooling performance. The time-dependent turbulent inflow information for the cross-flow is provided by a simultaneously performed LES of a spatially developing turbulent boundary layer. Whereas in the perpendicular injection case a rather large separation region is found at the leading edge of the jet hole, in the streamwise inclined injection cases no separation is observed. Compared with the normal injection case at the same blowing ratio, the streamwise inclination weakens the jet–cross-flow interaction significantly. Thus, the first appearance of the counter-rotating vortex pair (CVP) is shifted downstream and its strength is reduced. The increase of the blowing ratio leads to a stronger penetration of the jet into the cross-flow, resulting in a more upstream located and more pronounced CVP. Downstream of the jet exit the streamwise vortices are so large that besides the jet fluid also the cross-stream is partially entrained into this zone, which yields the worst cooling performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call