Abstract

In this paper, large-eddy simulation of the transition process in a separation bubble is compared to experimental results. The measurements and simulations are conducted under low free-stream turbulence conditions over a flat plate with a streamwise pressure distribution typical of those encountered on the suction side of turbine airfoils. The computational grid is sufficiently refined that the effects of sub-grid scale turbulence are adequately represented by the numerical dissipation of the computational algorithm. The large-eddy simulations are shown to accurately capture the transition process in the separated shear layer. The results of these simulations are used to gain further insight into the breakdown mechanisms in transitioning separation bubbles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.