Abstract

Unsteady flow dynamics in turbine rim seals are known to be complex and attempts accurately to predict the interaction of the mainstream flow with the secondary air system cooling flows using computational fluid dynamics (CFD) with Reynolds-averaged Navier–Stokes (RANS) turbulence models have proved difficult. In particular, published results from RANS models have over-predicted the sealing effectiveness of the rim seal, although their use in this context continues to be common. Previous studies have ascribed this discrepancy to the failure to model flow structures with a scale greater than the one which can be captured in the small-sector models typically used. This article presents results from a series of Large-Eddy Simulations (LES) of a turbine stage including a rim seal and rim cavity for, it is believed by the authors, the first time. The simulations were run at a rotational Reynolds number Reθ = 2.2 × 106 and a main annulus axial Reynolds number Rex = 1.3 × 106 and with varying levels of coolant mass flow. Comparison is made with previously published experimental data and with unsteady RANS simulations. The LES models are shown to be in closer agreement with the experimental sealing effectiveness than the unsteady RANS simulations. The result indicates that the previous failure to predict rim seal effectiveness was due to turbulence model limitations in the turbine rim seal flow. Consideration is given to the flow structure in this region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.