Abstract

The flow field and mixing in an expansion-ramp geometry is studied using large-eddy simulation (LES) with subgrid scale (SGS) modelling. The expansion-ramp geometry was developed to investigate enhanced mixing and flameholding characteristics while maintaining low total-pressure losses. Passive mixing was considered without taking into account the effects of chemical reactions and heat release, an approximation that is adequate for experiments conducted in parallel. The primary objective of the current work is to validate the LES–SGS closure in the case of passive turbulent mixing in a complex configuration and, if successful, to rely on numerical simulation results for flow details unavailable via experiment. Total (resolved-scale plus subgrid contribution) probability density functions (p.d.f.s) of the mixture fraction are estimated using a presumed beta-distribution model for the subgrid field. Flow and mixing statistics are in good agreement with the experimental measurements, indicating that the mixing on a molecular scale is correctly predicted by the LES–SGS model. Finally, statistics are shown to be resolution-independent by computing the flow for three resolutions, at twice and four times the resolution of the coarsest simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call