Abstract

The use of implantable pumps for cardiac support (Ventricular Assist Devices) has proven to be a promising option for the treatment of advanced heart failure. Avoiding blood damage and achieving high efficiencies represent two main challenges in the optimization process. To improve VADs, it is important to understand the turbulent flow field in depth in order to minimize losses and blood damage. The application of the Large-eddy simulation (LES) is an appropriate approach to simulate the flow field because turbulent structures and flow patterns, which are connected to losses and blood damage, are directly resolved. The focus of this paper is the comparison between an LES and an Unsteady Reynolds-Averaged Navier-Stokes simulation (URANS) because the latter one is the most frequently used approach for simulating the flow in VADs. Integral quantities like pressure head and efficiency are in a good agreement between both methods. Additionally, the mean velocity fields show similar tendencies. However, LES and URANS show different results for the turbulent kinetic energy. Deviations of several tens of percent can be also observed for a blood damage parameter, which depend on velocity gradients. Possible reasons for the deviations will be investigated in future works.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call