Abstract

Multiphoton microscopy has been a powerful tool in brain research, three-photon fluorescence microscopy is increasingly becoming an emerging technique for neurological research of the cortex in depth. Nonhuman primates play important roles in the study of brain science because of their neural and vascular similarity to humans. However, there are few research results of three-photon fluorescence microscopy on the brain of nonhuman primates due to the lack of optimized imaging systems and excellent fluorescent probes. Here we introduced a bright aggregation-induced emission (AIE) probe with excellent three-photon fluorescence efficiency as well as facile synthesis process and we validated its biocompatibility in the macaque monkey. We achieved a large-depth vascular imaging of approximately 1 mm in the cerebral cortex of macaque monkey with our lab-modified three-photon fluorescence microscopy system and the AIE probe. Functional measurement of blood velocity in deep cortex capillaries was also performed. Furthermore, the comparison of cortical deep vascular structure parameters across species was presented on the monkey and mouse cortex. This work is the first in vivo three-photon fluorescence microscopic imaging research on the macaque monkey cortex reaching the imaging depth of ∼1 mm with the bright AIE probe. The results demonstrate the potential of three-photon microscopy as primate-compatible method for imaging fine vascular networks and will advance our understanding of vascular function in normal and disease in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.