Abstract

The gamma camera system was designed for monitoring the medical fields such as a radiopharmaceutical preparation lab or a patient waiting room (after source injection) in the division of nuclear medicine. However, gamma cameras equipped with a large-angle pinhole collimator and a thick monolithic crystal suffer from the degradation of the spatial resolution at the periphery region due to parallax error by obliquely incident photons. To improve the uniformity of the spatial resolution across the field of view (FOV), we proposed a three-layer crystal detector with a maximum-likelihood position-estimation (MLPE) method, which can measure depth-of-interaction (DOI) information. The aim of this study was to develop and evaluate the performance of new detector experimentally. The proposed detector employed three layers of monolithic CsI(Tl) crystals, each of which is 50.0×50.0×2.0 mm3, and a large-angle pinhole collimator with an acceptance angle of 120°. The bottom surface of the third layer was directly coupled to an 8×8 channel position-sensitive photomultiplier tube (PSPMT, Hamamatsu H8500C). The PSPMT was read out using a resistive charge divider, which multiplexes 64 anodes into 8(X)+8(Y) channels. Gaussian-based MLPE method has been implemented using experimentally measured detector response functions (DRFs). Tc-99 m point source was imaged at different positions with and without DOI measurements. Experimental results showed that the spatial resolution was degraded gradually as the source moved from the center to the periphery of the FOV without DOI information but the DOI detector showed the marked improvement in the spatial resolution, especially at off-center by correcting the parallax error. In this paper, our new detector with DOI capability proved to characterize reliably the gamma event position with the high and uniform spatial resolution, so that the large-angle pinhole gamma camera could be a useful tool in contamination monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.