Abstract

AbstractLarge-amplitude vibration analysis for a three-dimensional (3D) braided composite cylindrical shell of finite length subjected to static or periodic axial forces has been presented. Based on a new micro-macro-mechanical model, a 3D braided composite may be treated as a cell system, which has been introduced as a representative cell of a 3D braided composite and its components, and the geometry of each cell is deeply dependent on its position in the cross section of the cylindrical shell. The shell is embedded in an elastic medium, which is modeled as a Pasternak elastic foundation. The motion equations are based on a higher-order shear deformation shell theory with a von Karman-Donnell–type of kinematic nonlinearity. A two-step perturbation technique is used to determine the linear and nonlinear frequency and parametric resonances of the 3D braided cylindrical shells. The numerical illustrations concern the nonlinear vibration behavior of braided composite cylindrical shells with different values ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.