Abstract

AbstractBy combining Hartree–Fock results for nonrelativistic ground‐state energies of N‐electron atoms with analytic expressions for the large‐dimension limit, we have obtained a simple renormalization procedure. For neutral atoms, this yields energies typically threefold more accurate than the Hartree–Fock approximation. Here, we examine the dependence on Z and N of the renormalized energies E(N, Z) for atoms and cations over the range Z, N = 2 → 290. We find that this gives for large Z = N an expansion of the same form as the Thomas–Fermi statistical model, E → Z7/2(C0 + C1Z−1/3 + C2Z−2/3 + C3Z−3/3 + ⃛), with similar values of the coefficients for the three leading terms. Use of the renormalized large‐D limit enables us to derive three further terms. This provides an analogous expansion for the correlation energy of the form δE δZ4/3(δC3 + δC5Z−2/3 + δC6Z−3/3 + ⃛); comparison with accurate values of δE available for the range Z ⩽ 36 indicates the mean error is only about 10%. Oscillatory terms in E and δE are also evaluated. © 1994 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.