Abstract

Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) is a membrane glycoprotein involved in the hydrolysis of extracellular nucleotides. Its main substrate is ATP yielding AMP and pyrophosphate. NPP1 has been proposed as a novel drug target, for diabetes type 2 and the treatment of calcium pyrophosphate dihydrate deposition disease leading to inflammatory arthritis. The monitoring of NPP1 reactions is difficult because its velocity is very slow requiring highly sensitive analytical procedures. In this study, a method of large-volume sample stacking with polarity switching was developed, and separations were optimized. Large sample volumes were loaded by hydrodynamic injection (5 psi, 13 s) followed by removal of a large plug of sample matrix from the capillary using polarity switching (-10 kV). The stacked analytes were subsequently separated in phosphate buffer (100mM, pH 9.2) at 20 kV. The validated method was found to be linear (R(2) = 0.9927) in the concentration range of 0.05-50μM of AMP, with high accuracy and precision. The determined LOD and LOQ of AMP were 18 nM and 60 nM, respectively. Compared to a previously reported CE procedure using sweeping technique, a fivefold improvement of sensitivity was achieved. Moreover, the new technique was faster, and reproducibility of migration times was improved (RSD value = 1.2%). Importantly, adenine nucleotide analogs and derivatives tested as NPP1 inhibitors could be completely separated from the substrate ATP and the enzymatic product AMP. The method was applied to NPP1 inhibition assays investigating nucleotide-derived inhibitors in the presence of ATP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.