Abstract

A capillary zone electrophoresis (CZE) method with UV–vis detection has been developed for the simultaneous monitoring of the major degradation products of metribuzin, i.e. deaminometribuzin (DA), deaminodiketometribuzin (DADK) and diketometribuzin (DK). The dissociation acid constants have also been estimated by CE and no significant differences have been observed with the values obtained by applying other techniques. Optimum separation has been achieved in less than 9 min in 40 mM sodium tetraborate buffer, pH 9.5 by applying a voltage of 15 kV at 25 °C and using p-aminobenzoic acid as internal standard. In order to increase sensitivity, large volume sample stacking (LVSS) with polarity switching has been applied as on-line pre-concentration methodology. Detection limits of 10, 10 and 20 ng/mL for DA, DADK and DK, respectively were obtained. The method has been applied to soil samples, after pressurized liquid extraction (PLE). Samples were extracted at high temperature (103 °C and 1500 psi) using methanol as extraction solvent and sodium sulphate as drying agent. This PLE procedure was followed by an off-line pre-concentration and sample clean-up procedure by solid-phase extraction (SPE) using a LiChrolut EN sorbent column. These last two procedures were also suitable for the direct treatment of groundwater samples before CE analysis. The combination of both off-line and on-line pre-concentration procedures provided a significant improvement in sensitivity. LVSS provided pre-concentration factors of 4, 36 and 28 for DK, DA and DADK, respectively and with SPE a pre-concentration of 500-fold for the case of water samples and of 2.5-fold in the case of soil samples was obtained. The method is suitable for the monitoring of these residues in environmental samples with high sensitivity, precision and satisfactory recoveries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.