Abstract

Optical frequency-modulated continuous-wave (FMCW) reflectometry is a ranging technique that allows for high-resolution distance measurements over long ranges. Similarly, swept-source optical coherence tomography (SS-OCT) provides high-resolution depth imaging over typically shorter distances and higher scan speeds. In this work, we demonstrate a low-cost, low-bandwidth 3D imaging system that provides the high axial resolution imaging capability normally associated with SS-OCT over typical FMCW ranging depths. The imaging system combines 12 distributed feedback laser (DFB) elements from a single butterfly module to provide an axial resolution of 27.1 μm over 6 m of depth and up to 14 cubic meters of volume. Active sweep linearization is used, greatly reducing the signal processing overhead. Various sub-surface, OCT-style tomograms of semi-transparent objects are shown, as well as 3D maps of various objects over depths ranging from sub-millimeter to several meters. Such imaging capability would make long-distance, high-resolution surface interrogation possible in a low-cost, compact package.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.