Abstract

For spatially extended conservative or dissipative physical systems, it appears natural that a density of characteristic exponents per unit volume should exist when the volume tends to infinity. In the case of a turbulent viscous fluid, however, this simple idea is complicated by the phenomenon of intermittency. In the present paper we obtain rigorous upper bounds on the distribution of characteristic exponents in terms of dissipation. These bounds have a reasonable large volume behavior. For two-dimensional fluids a particularly striking result is obtained: the total information creation is bounded above by a fixed multiple of the total energy dissipation (at fixed viscosity). The distribution of characteristic exponents is estimated in an intermittent model of turbulence (see [7]), and it is found that a change of behavior occurs at the valueD=2.6 of the self-similarity dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.