Abstract

Summary Large-volume foam-gel treatments can provide a cost-effective method to achieve in-depth conformance improvement in fractured reservoirs. The applicability and cost effectiveness of the approach depends on the availability of a cheap source of gas, the efficiency with which the foam can be placed into the high permeability thief zone(s), and the effectiveness of the gelled foam barrier in diverting reservoir drive fluids to improve oil recovery. This paper reviews progress in the application of large-volume CO2-foam-gel treatments to improve conformance in the Rangely Weber Sand Unit (RWSU), Colorado. During the period November 1996–November 1997 three large-volume foam-gel treatments were successfully placed into the Rangely reservoir. The first 36 400 bbl treatment, implemented November 1996, increased the pattern oil rate from 260 barrels of oil per day (BOPD) in March 1997 to ±330 BOPD in August 1998; a conservative estimate of incremental oil recovery is ±40 000 bbl by the end of August 1998. The second 43 450 bbl treatment, implemented August-September 1997, increased the pattern oil rate from ±430 BOPD in March 1998 to ±470 BOPD in August 1998; post-treatment, the pattern oil rate data is described by a linear regression with slope, +56 BOPD but it is too early to make a firm estimate of incremental oil recovery. The third 44 700 bbl treatment, implemented October–November 1997, increased the pattern oil rate from ±330 BOPD in May 1998 to ±375 BOPD in July–August 1998; a linear regression of the post-treatment data gives a positive slope but again it is too early to estimate incremental oil recovery. Some general features in the pattern production response given by the three foam-gel treatments were observed. First, each of the treatments induces a stabilization in the pattern oil rate which, for treatments I and II, is accompanied by a decrease in the pattern gas rate. Second, the first positive oil rate response given by each of the treatments is observed 6–8 months after treatment execution and is dominated by the response at producer wells lying to the west/southwest and/or east/southeast of the treated injector well. For a given treatment volume, the cost of a foam-gel treatment at Rangely is 40%–50% below the average cost of polymer gel treatments. As the foam is injected at a higher rate, the total pump time required for a 40 000 bbl foam-gel treatment is similar to a 20 000 bbl polymer gel treatment. Early during pumping treatments II and III, we attempted to increase the CO2 content of the foam from 80 to 85 vol %; this resulted in a wellhead pressure which was too close to the CO2 pressure limit necessitating a decrease in foam injection rate. Thus, in optimizing foam-gel treatment cost, there is a balance between maximizing the content of the inexpensive CO2 phase and minimizing total pump time. For Treatments II and III, the cost of the liquid phase formulation was reduced by decreasing the concentrations of surfactant and buffer. The implementation and evaluation of three large-volume foam-gel treatments at Rangely indicates that the foam-gel approach provides a cost-effective method to achieve in-depth conformance improvement in fractured reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call